
This work was supported by the German Federal Ministry of Education and Research through the Program “International Future Labs for Artificial Intelligence” (Grant number 01DD20002A). 

Motivation and Scope
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A novel probabilistic method for modeling the dynamic behavior of bioreactors in the most profitable region of operating conditions is proposed. Based on simulation data, a dynamic experiment is 

redesigned online through active inference. Reinforcement learning is used to maximize the Bayesian model evidence, that is, to minimize surprise.

✓ Probabilistic (causal) models of bioreactors are learned by biasing data gathering using the Free Energy of the Expected Future.

✓ Reinforcement learning following an MPC-approach is used to combine planning and control for online experiment redesign.

✓ Bayesian Variational Analysis methods are applied for state inference and probabilistic parameter estimation.

✓ Simulation data is used to learn a redesign policy for adaptive experimental design.
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Parametric precision
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abstract (e. g., macroscopic or cybernetic) models

used for bioreactor optimization are too shallow to

account for the complexity of switching in metabolic

pathways when a microorganism is responding to

changes in the abiotic conditions

A challenge in modeling for

optimization is how effective

bioreactor models can be learned from

designed experiments given (i) the rich

complexity of profiling operating

conditions, and (ii) the circular

dependence of model learning and

information content of sampled data,

which often leads to suboptimal

performance and low reproducibility.

With low-complexity imperfect models, bioreactor optimization is often sub-optimal. Why? 

Probabilistic (causal) models of bioreactors

A probabilistic (causal) model of a bioreactor is defined by a joint

probability distribution over the following set of stochastic variables:

These variables are assumed to follow the (hidden) state evolution and

observation equations:

The probabilistic model m of a bioreactor is completely specified by the

(initial) Gaussian prior distributions for its parameters 𝜃, 𝜑, and the Gamma

priors for the precision hyper-parameters 𝛼, 𝜎.

𝑥𝑡 = 𝑓 𝑥𝑡−1, 𝜃, 𝑢𝑡−1 + 𝜂𝑡; 𝜂𝑡= 𝑁 0, 𝛼−1𝑰

𝑦𝑡 = 𝑔 𝑥𝑡, 𝜑 + 𝜀𝑡; 𝜀𝑡 = 𝑁 0, 𝜎−1𝑰

Active inference (Goal-directed sampling)

Modeling Run 

#
Biomass [g/L]

1 24.11

2 32.64

3 31.58
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Active inference proposes that the modeler´s goal or intent are encoded in the

probabilistic model as a prior preference for desired observations (e. g., higher biomass

productivity or protein expression).

Active Inference = Active Learning + Variational Inference

Probabilistic model learning is posed as the

maximization of a free-energy lower bound

𝐹(𝓆) functional for the model evidence with

respect to an approximate density 𝓆 Φ

𝐹 𝓆 = ln 𝑝 ȁΦ 𝑚 + 𝑝 ȁΦ 𝑦,𝑚 − 𝑝 Φ 𝑞

𝐸𝐿𝐵𝑂 = ln 𝑝 ȁ𝑦 𝑚 − 𝒟𝐾𝐿 𝑝 Φ ; 𝑝 ȁΦ 𝑦,𝑚

where 𝒟𝐾𝐿 is the Kullback-Leibler divergence. 

Adaptive optimization-oriented redesign

Reinforcement learning for online redesign
Let 𝑧𝑡:𝑇 denote a sequence of variables through time, 𝑧𝑡:𝑇 = 𝑧𝑡 , . . , 𝑧𝑇 , and let define a policy Π as a

way of behaving over time:

𝑢 ← 𝚷(𝑥𝑡), (the map 𝚷 here is a probabilistic assignment from states to actions).

Applying recursively the policy Π defines sequence of actions 𝜋 = 𝑢𝑡 , … , 𝑢𝑇−1 . In “modeling for

optimization,” the specific aim is to minimize the free energy of the expected future ෨𝐹𝜋, which is defined

as:

෨𝐹𝜋 = 𝒟𝐾𝐿 ԡ𝑞 ȁ𝑦𝑡:𝑇 , 𝑥𝑡:𝑇 , 𝚽 𝜋 𝑝∗ 𝑦𝑡:𝑇 , 𝑥𝑡:𝑇 , 𝚽 ; 𝚽 = 𝜃, 𝜑, 𝛼, 𝜎

where 𝑞 ȁ𝑦𝑡:𝑇 , 𝑥𝑡:𝑇 , Φ 𝜋 models the probability distribution for future trajectories in a dynamic

experiment under policy 𝜋 and 𝑝∗ 𝑦𝑡:𝑇 , 𝑥𝑡:𝑇 , 𝚽 defines the joint probability distribution for the optimal

trajectory of the hidden states, model parameters and preferred observations. Thus, when ෨𝐹𝜋 is driven to

zero, the policy 𝜋 becomes the (probabilistic) optimal policy. Notice that by minimizing ෨𝐹𝜋, the surprise

− ln 𝑝 ȁ𝑦𝑡:𝑇 𝑚 is also minimized, which in turns maximize the Bayesian model evidence.

Results for the Baker’s yeast production process


