Probabilistic Modeling for Optimization of Bioreactors using

Reinforcement Learning with Active Inference
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Motivation and Scope

With low-complexity imperfect models, bioreactor optimization is often sub-optimal. Why?
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Methodology and Results

Active iInference (Goal-directed sampling)

Probabilistic (causal) models of bioreactors o , | |
Active Inference proposes that the modeler's goal or intent are encoded in the

A probabilistic (causal) model of a bioreactor iIs defined by a joint probabilistic model as a prior preference for desired observations (e. g., higher biomass
probability distribution over the following set of stochastic variables: productivity or protein expression).
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Active Inference = Active Learning + Variational Inference

o x;y:the nxn; hidden states time-series; the p x #; observations (sampled data), N /D | Change conditions Model developer  propabilistic model learning Is posed as the

N maximization of a free-energy lower bound
F(g) functional for the model evidence with
respect to an approximate density g

¢ g the n, x n; manipulated (controlled) mputs time-series,

Bioreactor

¢ @ the ngx | evolution parameters; the npx 1 observation parameters, G\
0
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¢ ( the state noise precision (structural errors),

¢ 7 the measurement noise precision (analytical and sensor calibration errors),

F(g) = {Inp(®|m) + p(®ly,m) — p(®)),

ELBO =lInp(y|m) — DKL(I?((D);I?((DW, m))
where Dy, Is the Kullback-Leibler divergence.
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These variables are assumed to follow the (hidden) state evolution and

observation equations: B
: Xt = f(xt—lr 0,us—1) + Ney Ne= N(O,a 11)
Yt = g(xt» 90) T & & = N(O;U_ll)

The probabilistic model m of a bioreactor is completely specified by the Reinforcement |eaming for online redesign
(initial) Gaussian prior distributions for its parameters 6, ¢, and the Gamma

priors for the precision hyper-parameters «, o.

Measurements

Let z,. denote a sequence of variables through time, z,.; = {z;,.., z}, and let define a policy I as a
way of behaving over time:

u <« II(x;), (the map IT here Is a probabilistic assignment from states to actions).

Adaptive optimization=oriented redesign Applying recursively the policy II defines sequence of actions m = {uy, ..., ur_1}. In “modeling for
optimization,” the specific aim is to minimize the free energy of the expected future £, which is defined
Inputs: T, K. xg. prior q(&), state evolution and observation functions f, g as:
horr=ltol =1 F?T — DKL (q(yt:Ti Xt:T» (I)lT[) ”p*(yt:T' Xt:T» (I)))’ P = (8, P, Q, O-)

Infer current state ¥, using u;_,, ¥,_, and Thompson Sampling of prior g(&P)

k= L T .
>Fork=1toK where q(y..r, xe.7, @|m) models the probability distribution for future trajectories in a dynamic

4(Pe) = q(®) experiment under policy @ and p* (y;.r, x¢.7, ®) defines the joint probability distribution for the optimal
R trajectory of the hidden states, model parameters and preferred observations. Thus, when E, is driven to
Thompson Sampling of the prior G(®y): ¢y = TS[: G(Py)] zero, the policy m becomes the (probabilistic) optimal policy. Notice that by minimizing F,, the surprise
u¥ = argmax,en Tes1(Frar| P £e) — In p(y.r|m) is also minimized, which in turns maximize the Bayesian model evidence.
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Significance and Concluding Remarks

A novel probabilistic method for modeling the dynamic behavior of bioreactors in the most profitable region of operating conditions iIs proposed. Based on simulation data, a dynamic experiment is
redesigned online through active inference. Reinforcement learning is used to maximize the Bayesian model evidence, that is, to minimize surprise.

v" Probabilistic (causal) models of bioreactors are learned by biasing data gathering using the Free Energy of the Expected Future.

v Reinforcement learning following an MPC-approach is used to combine planning and control for online experiment redesign.

v Bayesian Variational Analysis methods are applied for state inference and probabilistic parameter estimation.

v Simulation data is used to learn a redesign policy for adaptive experimental design.
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